技术

学习网络 学习Linux go 内存管理 golang 系统调用与阻塞处理 图解Goroutine 调度 重新认识cpu mosn有的没的 负载均衡泛谈 《Mysql实战45讲》笔记 单元测试的新解读 《Redis核心技术与实现》笔记 《Prometheus监控实战》笔记 Prometheus 告警学习 calico源码分析 对容器云平台的理解 Prometheus 源码分析 并发的成本 基础设施优化 hashicorp raft源码学习 docker 架构 mosn细节 与微服务框架整合 Java动态代理 编程范式 并发通信模型 《网络是怎样连接的》笔记 go channel codereview gc分析 jvm 线程实现 go打包机制 go interface及反射 如何学习Kubernetes 《编译原理之美》笔记——后端部分 《编译原理之美》笔记——前端部分 Pilot MCP协议分析 go gc 内存管理玩法汇总 软件机制 istio流量管理 Pilot源码分析 golang io 学习Spring mosn源码浅析 MOSN简介 《datacenter as a computer》笔记 学习JVM Tomcat源码分析 Linux可观测性 学习存储 学计算 Gotty源码分析 kubernetes operator kaggle泰坦尼克问题实践 kubernetes垂直扩缩容 神经网络模型优化 直觉上理解机器学习 knative入门 如何学习机器学习 神经网络系列笔记 TIDB源码分析 《阿里巴巴云原生实践15讲》笔记 Alibaba Java诊断工具Arthas TIDB存储——TIKV 《Apache Kafka源码分析》——简介 netty中的线程池 guava cache 源码分析 Springboot 启动过程分析 Spring 创建Bean的年代变迁 Linux内存管理 自定义CNI IPAM 副本一致性 spring redis 源码分析 kafka实践 spring kafka 源码分析 Linux进程调度 让kafka支持优先级队列 Codis源码分析 Redis源码分析 C语言学习 《趣谈Linux操作系统》笔记 docker和k8s安全机制 jvm crash分析 Prometheus 学习 容器日志采集 Kubernetes 控制器模型 Kubernetes监控 容器狂占cpu怎么办? Kubernetes资源调度——scheduler 时序性数据库介绍及对比 influxdb入门 maven的基本概念 《Apache Kafka源码分析》——server Kubernetes objects 源码分析体会 《数据结构与算法之美》——算法新解 Kubernetes源码分析——controller mananger Kubernetes源码分析——apiserver Kubernetes源码分析——kubelet Kubernetes介绍 ansible学习 Kubernetes源码分析——从kubectl开始 jib源码分析之Step实现 jib源码分析之细节 线程排队 跨主机容器通信 jib源码分析及应用 为容器选择一个合适的entrypoint kubernetes yaml配置 《持续交付36讲》笔记 mybatis学习 程序猿应该知道的 无锁数据结构和算法 CNI——容器网络是如何打通的 为什么很多业务程序猿觉得数据结构和算法没用? 串一串一致性协议 当我在说PaaS时,我在说什么 《数据结构与算法之美》——数据结构笔记 PouchContainer技术分享体会 harbor学习 用groovy 来动态化你的代码 精简代码的利器——lombok 学习 《深入剖析kubernetes》笔记 编程语言的动态性 rxjava3——背压 rxjava2——线程切换 spring cloud 初识 《深入拆解java 虚拟机》笔记 《how tomcat works》笔记 hystrix 学习 rxjava1——概念 Redis 学习 TIDB 学习 分布式计算系统的那些套路 Storm 学习 AQS1——论文学习 Unsafe Spark Stream 学习 linux vfs轮廓 《自己动手写docker》笔记 java8 实践 中本聪比特币白皮书 细读 区块链泛谈 比特币 大杂烩 总纲——如何学习分布式系统 hbase 泛谈 forkjoin 泛谈 看不见摸不着的cdn是啥 《jdk8 in action》笔记 程序猿视角看网络 bgp初识 calico学习 AQS——粗略的代码分析 我们能用反射做什么 web 跨域问题 《clean code》笔记 《Elasticsearch权威指南》笔记 mockito简介及源码分析 2017软件开发小结—— 从做功能到做系统 《Apache Kafka源码分析》——clients dns隐藏的一个坑 《mysql技术内幕》笔记2 《mysql技术内幕》笔记1 log4j学习 为什么netty比较难懂? 回溯法 apollo client源码分析及看待面向对象设计 学习并发 docker运行java项目的常见问题 Scala的一些梗 OpenTSDB 入门 spring事务小结 事务一致性 javascript应用在哪里 《netty in action》读书笔记 netty对http2协议的解析 ssl证书是什么东西 http那些事 苹果APNs推送框架pushy apple 推送那些事儿 编写java框架的几大利器 java内存模型 java exception Linux IO学习 netty内存管理 测试环境docker化实践 netty在框架中的使用套路 Nginx简单使用 《Linux内核设计的艺术》小结 Go并发机制及语言层工具 Linux网络源代码学习——数据包的发送与接收 《docker源码分析》小结 docker中涉及到的一些linux知识 Linux网络源代码学习——整体介绍 zookeeper三重奏 数据库的一些知识 Spark 泛谈 链式处理的那些套路 netty回顾 Thrift基本原理与实践(二) Thrift基本原理与实践(一) 回调 异步执行抽象——Executor与Future Docker0.1.0源码分析 java gc Jedis源码分析 Redis概述 机器学习泛谈 Linux网络命令操作 JTA与TCC 换个角度看待设计模式 Scala初识 向Hadoop学习NIO的使用 以新的角度看数据结构 并发控制相关的硬件与内核支持 systemd 简介 quartz 源码分析 基于docker搭建测试环境(二) spring aop 实现原理简述 自己动手写spring(八) 支持AOP 自己动手写spring(七) 类结构设计调整 分析log日志 自己动手写spring(六) 支持FactoryBean 自己动手写spring(九) 总结 自己动手写spring(五) bean的生命周期管理 自己动手写spring(四) 整合xml与注解方式 自己动手写spring(三) 支持注解方式 自己动手写spring(二) 创建一个bean工厂 自己动手写spring(一) 使用digester varnish 简单使用 关于docker image的那点事儿 基于docker搭建测试环境 分布式配置系统 JVM内存与执行 git spring rmi和thrift maven/ant/gradle使用 再看tcp 缓存系统 java nio的多线程扩展 《Concurrency Models》笔记 回头看Spring IOC IntelliJ IDEA使用 Java泛型 vagrant 使用 Go常用的一些库 Python初学 Goroutine 调度模型 虚拟网络 《程序员的自我修养》小结 VPN(Virtual Private Network) Kubernetes存储 访问Kubernetes上的Service Kubernetes副本管理 Kubernetes pod 组件 Go学习 JVM类加载 硬币和扑克牌问题 LRU实现 virtualbox 使用 ThreadLocal小结 docker快速入门

架构

《许式伟的架构课》笔记 Kubernetes webhook 发布平台系统设计 k8s水平扩缩容 Scheduler如何给Node打分 Scheduler扩展 controller 组件介绍 openkruise cloneset学习 kubernetes crd 及kubebuilder学习 pv与pvc实现 csi学习 client-go学习 kubelet 组件分析 调度实践 Pod是如何被创建出来的? 《软件设计之美》笔记 mecha 架构学习 Kubernetes events学习及应用 CRI 《推荐系统36式》笔记 资源调度泛谈 系统设计原则 grpc学习 元编程 以应用为中心 istio学习 下一代微服务Service Mesh 《实现领域驱动设计》笔记 serverless 泛谈 《架构整洁之道》笔记 处理复杂性 那些年追过的并发 服务器端编程 网络通信协议 《聊聊架构》 书评的笔记 如何学习架构 《反应式设计模式》笔记 项目的演化特点 反应式架构摸索 函数式编程的设计模式 服务化 ddd反模式——CRUD的败笔 研发效能平台 重新看面向对象设计 业务系统设计的一些体会 函数式编程 《左耳听风》笔记 业务程序猿眼中的微服务管理 DDD实践——CQRS 项目隔离——案例研究 《编程的本质》笔记 系统故障排查汇总及教训 平台支持类系统的几个点 代码腾挪的艺术 abtest 系统设计汇总 《从0开始学架构》笔记 初级权限系统设计 领域驱动理念入门 现有上传协议分析 移动网络下的文件上传要注意的几个问题 推送系统的几个基本问题 用户登陆 做配置中心要想好的几个基本问题 不同层面的异步 分层那些事儿 性能问题分析 当我在说模板引擎的时候,我在说什么 用户认证问题 资源的分配与回收——池 消息/任务队列

标签


go interface及反射

2020年03月13日

前言

interface,接口,restful接口,SQL 也是一种接口

从编码的角度看:Interfaces give programs structure.Interfaces encourage design by composition.

You must do your best to understand what could change and use interfaces to decouple.

interface

深度解密Go语言之关于 interface 的 10 个问题

鸭子类型,是动态编程语言的一种对象推断策略,它更关注对象能如何被使用,而不是对象的类型本身。Go 语言作为一门现代静态语言,是有后发优势的。它引入了动态语言的便利,同时又会进行静态语言的类型检查。

值接收者和指针接收者

方法带不带指针:(p *Person) refers to a pointer to the created instance of the Person struct. it is like using the keyword this in Java or self in Python when referring to the pointing object. (p Person) is a copy of the value of Person ia passed to the function. any change that you make in p if you pass it by value won’t be reflected in source p.

func (p *Person)GetFullName() string{
    return fmt.Println("%s %s",p.Name,p.Surname)
}
func (p Person)GetFullName() string{
    return fmt.Println("%s %s",p.Name,p.Surname)
}

深度解密Go语言之关于 interface 的 10 个问题如果实现了接收者是值类型的方法,会隐含地也实现了接收者是指针类型的方法。

是使用值接收者还是指针接收者,不是由该方法是否修改了调用者(也就是接收者)来决定,而是应该基于该类型的本质。

  1. 如果类型具备“原始的本质”,也就是说它的成员都是由 Go 语言里内置的原始类型,如字符串,整型值等,那就定义值接收者类型的方法。像内置的引用类型,如 slice,map,interface,channel,这些类型比较特殊,声明他们的时候,实际上是创建了一个 header, 对于他们也是直接定义值接收者类型的方法。这样,调用函数时,是直接 copy 了这些类型的 header,而 header 本身就是为复制设计的。
  2. 如果类型具备非原始的本质,不能被安全地复制,这种类型总是应该被共享,那就定义指针接收者的方法。比如 go 源码里的文件结构体(struct File)就不应该被复制,应该只有一份实体。

在一些框架代码中,会将指针接收者命名为 this,很有感觉

func (this *Person)GetFullName() string{
    return fmt.Println("%s %s",this.Name,this.Surname)
}

interface 底层实现

Go 使用 iface 结构体表示包含方法的接口;使用 eface 结构体表示不包含任何方法的 interface{} 类型

Go Data Structures: InterfacesLanguages with methods typically fall into one of two camps: prepare tables for all the method calls statically (as in C++ and Java), or do a method lookup at each call (as in Smalltalk and its many imitators, JavaScript and Python included) and add fancy caching to make that call efficient. Go sits halfway between the two: it has method tables but computes them at run time. I don’t know whether Go is the first language to use this technique, but it’s certainly not a common one.

interface{} 不是任意类型

Go 语言设计与实现-接口

package main
type TestStruct struct{}
func NilOrNot(v interface{}) bool {
	return v == nil
}
func main() {
	var s *TestStruct
	fmt.Println(s == nil)      // #=> true
	fmt.Println(NilOrNot(s))   // #=> false
}

出现上述现象的原因是 —— 调用 NilOrNot 函数时发生了隐式的类型转换,除了向方法传入参数之外,变量的赋值也会触发隐式类型转换。在类型转换时,*TestStruct 类型会转换成 interface{} 类型,转换后的变量(eface struct)不仅包含转换前的变量,还包含变量的类型信息 TestStruct,所以转换后的变量与 nil 不相等。

变量的赋值、向方法传入参数会触发隐式类型转换,类型转换的情况比较多:

  1. 同一类型的转换,比如int64与int
  2. 某类型与字符串的转换,这个有专门的包
  3. 字符串与字符/short数组的转换,比如string与[]uint8
  4. 具体类型转换成接口类型。

类型断言是,一个大类型,比如interface{},怀疑它可能是字符串,则可以xxx.(string)

eface 内部结构

type Binary uint64
func main() {
	b := Binary(200)
	any := (interface{})(b)
	fmt.Println(any)
}

iface 内部结构

type Binary uint64
func (i Binary) String() string {
	return strconv.FormatUint(i.Get(), 10)
}
func (i Binary) Get() uint64 {
	return uint64(i)
}
func main() {
	b := Binary(200)
	any := Stringer(b)
	fmt.Println(any)
}

Interface values are represented as a two-word pair giving a pointer to information about the type stored in the interface and a pointer to the associated data. Assigning b to an interface value of type Stringer sets both words of the interface value.一个结构体实现了一个接口,把这个结构体变量赋值给这个接口变量,就是赋值这个接口变量里的俩指针,就完成了数据和实现的绑定。

Note that the itable corresponds to the interface type, not the dynamic type. In terms of our example, the itable for Stringer holding type Binary lists the methods used to satisfy Stringer, which is just String: Binary’s other methods (Get) make no appearance in the itable.itable(Stringer,Binary) 的方法表只包含 String 方法不包含 Get 方法。

any := Stringer(b) 用伪代码表示 就是

创建 iface struct for any
创建 itab struct 
tab := getSymAddr(`go.itab.main.Binary,main.Stringer`).(*itab)
tab.inter = getSymAddr(`type.main.Stringer`).(*interfacetype)
tab._type = getSymAddr(`type.main.Binary`).(*_type)
tab.fun[0] = getSymAddr(`main.(*Binary).String`).(uintptr)

any.String() 相当于 any.tab->fun[0]

C++ 和 Go 在定义接口方式上的不同,也导致了底层实现上的不同。C++ 通过虚函数表来实现基类调用派生类的函数;而 Go 通过 itab 中的 fun 字段来实现接口变量调用实体类型的函数。C++ 中的虚函数表是在编译期生成的;而 Go 的 itab 中的 fun 字段是在运行期间动态生成的。

反射

深度解密GO语言之反射反射的本质是程序在运行期探知对象的类型信息和内存结构(泛化一点说,就是我想知道某个指针对应的内存里有点什么),不用反射能行吗?可以的!使用汇编语言,直接和内层打交道,什么信息不能获取?但是,当编程迁移到高级语言上来之后,就不行了!就只能通过反射来达到此项技能。

reflect 包里定义了一个接口reflect.Type和一个结构体reflect.Value,它们提供很多函数来获取存储在接口里的类型信息,反射包中的所有方法基本都是围绕着 Type 和 Value 这两个类型设计的。reflect.Type 主要提供关于类型相关的信息,所以它和 _type 关联比较紧密; reflect.Value 则结合 _type 和 data 两者,因此程序员可以获取甚至改变类型的值。

TypeOf

TypeOf 函数用来提取一个接口中值的类型信息。由于它的输入参数是一个空的 interface{},调用此函数时,实参会先被转化为 interface{} 类型。这样,实参的类型信息、方法集、值信息都存储到 interface{} 变量里了。

func TypeOf(i interface{}) Type{
    eface := *(*emptyInterface)(unsafe.Pointer(&i))
    return toType(eface.typ)
}
func toType(t *rtype) Type {
	if t == nil {
		return nil
	}
	return t
}

ValueOf

reflect.Value 表示 interface{} 里存储的实际变量,它能提供实际变量的各种信息。相关的方法常常是需要结合类型信息和值信息。例如,如果要提取一个结构体的字段信息,那就需要用到 _type (具体到这里是指 structType) 类型持有的关于结构体的字段信息、偏移信息,以及 *data 所指向的内容 —— 结构体的实际值。

func ValueOf(i interface{}) Value {
	if i == nil {
		return Value{}
	}
	escapes(i)
	return unpackEface(i)
}
func unpackEface(i interface{}) Value {
	e := (*emptyInterface)(unsafe.Pointer(&i))
	t := e.typ
	if t == nil {
		return Value{}
	}
	f := flag(t.Kind())
	if ifaceIndir(t) {
		f |= flagIndir
	}
	return Value{t, e.word, f}
}

通过 Type() 方法和 Interface() 方法可以打通 interface、 Type、 Value 三者。Type() 方法也可以返回变量的类型信息,与 reflect.TypeOf() 函数等价。Interface() 方法可以将 Value 还原成原来的 interface。

  1. 按名字访问结构的成员 reflect.ValueOf(e).FieldByName("Name")
  2. 按名字访问结构的方法 reflect.ValueOf(e).methodByName("updateAge").Call(args)

三大定律

反射建立在类型系统之上,以java 视角来表述的话,反射为程序提供了部分操作 jvm 数据的能力。

  1. Reflection goes from interface value to reflection object. 我们能将 Go 语言的 interface{} 变量转换成反射对象。为什么是从 interface{} 变量到反射对象?当我们执行 reflect.ValueOf(1) 时,虽然看起来是获取了基本类型 int 对应的反射类型,但是由于 reflect.TypeOfreflect.ValueOf 两个方法的入参都是 interface{} 类型,所以在方法执行的过程中发生了类型转换。
  2. Reflection goes from reflection object to interface value. 我们可以从反射对象可以获取 interface{} 变量(Interface() 方法)。
  3. To modify a reflection object, the value must be settable.如果需要操作一个反射变量,那么它必须是可设置的。PS: 可设置 ==> 可以找到原变量地址 ==> go 是值传递 ==> reflect.ValueOf(引用) 反射变量 Value 必须要 hold 住原变量的地址才行

与java 对比

hotspot 内部c++对java 对象的表示

java中的反射,设计思路是,先类型后值。意思是,无论如何,都是先找到属性和方法的描述,然后根据描述来获取属性的值、调用方法的执行。要进行这样的操作,入口都是由类的描述开始。

Class cls = obj.getClass(); 
Constructor constructor = cls.getConstructor(); 
Method[] methods = cls.getDeclaredFields();

golang设计思路为,值和类型划分的非常清晰,两条腿走路。Go 没有类的概念,并且结构体只包含了已声明的字段。因此,我们需要借助“reflection”包来获得所需的信息

  java go
获取对象的类型/表示 getClass() objType := reflect.TypeOf(obj)
获取对象的值/表示 不支持 objValue := reflect.ValueOf(obj)
获取属性描述 getClass().getField("fieldName") objType.Field(index)
获取属性的值 field.get(obj) objValue.Filed(index).Interface()
获取方法的描述 getClass().getMethod("methodName") objType.Method(index)
方法调用 method.invoke(obj, args) objValue.Method(index).Call(args)

在java中,通过类的描述,来获得method,由于该method是属于类级别的,所以,调用时,需要传入参数obj和args;而golang中,method是对象级别的,所以,调用时,不需要参数obj,只需要args。