技术

学习网络 学习Linux go 内存管理 golang 系统调用与阻塞处理 图解Goroutine 调度 重新认识cpu mosn有的没的 负载均衡泛谈 《Mysql实战45讲》笔记 单元测试的新解读 《Redis核心技术与实现》笔记 《Prometheus监控实战》笔记 Prometheus 告警学习 calico源码分析 对容器云平台的理解 Prometheus 源码分析 并发的成本 基础设施优化 hashicorp raft源码学习 docker 架构 mosn细节 与微服务框架整合 Java动态代理 编程范式 并发通信模型 《网络是怎样连接的》笔记 go channel codereview gc分析 jvm 线程实现 go打包机制 go interface及反射 如何学习Kubernetes 《编译原理之美》笔记——后端部分 《编译原理之美》笔记——前端部分 Pilot MCP协议分析 go gc 内存管理玩法汇总 软件机制 istio流量管理 Pilot源码分析 golang io 学习Spring mosn源码浅析 MOSN简介 《datacenter as a computer》笔记 学习JVM Tomcat源码分析 Linux可观测性 学习存储 学计算 Gotty源码分析 kubernetes operator kaggle泰坦尼克问题实践 kubernetes垂直扩缩容 神经网络模型优化 直觉上理解机器学习 knative入门 如何学习机器学习 神经网络系列笔记 TIDB源码分析 《阿里巴巴云原生实践15讲》笔记 Alibaba Java诊断工具Arthas TIDB存储——TIKV 《Apache Kafka源码分析》——简介 netty中的线程池 guava cache 源码分析 Springboot 启动过程分析 Spring 创建Bean的年代变迁 Linux内存管理 自定义CNI IPAM 副本一致性 spring redis 源码分析 kafka实践 spring kafka 源码分析 Linux进程调度 让kafka支持优先级队列 Codis源码分析 Redis源码分析 C语言学习 《趣谈Linux操作系统》笔记 docker和k8s安全机制 jvm crash分析 Prometheus 学习 容器日志采集 Kubernetes 控制器模型 Kubernetes监控 容器狂占cpu怎么办? Kubernetes资源调度——scheduler 时序性数据库介绍及对比 influxdb入门 maven的基本概念 《Apache Kafka源码分析》——server Kubernetes objects 源码分析体会 《数据结构与算法之美》——算法新解 Kubernetes源码分析——controller mananger Kubernetes源码分析——apiserver Kubernetes源码分析——kubelet Kubernetes介绍 ansible学习 Kubernetes源码分析——从kubectl开始 jib源码分析之Step实现 jib源码分析之细节 线程排队 跨主机容器通信 jib源码分析及应用 为容器选择一个合适的entrypoint kubernetes yaml配置 《持续交付36讲》笔记 mybatis学习 程序猿应该知道的 无锁数据结构和算法 CNI——容器网络是如何打通的 为什么很多业务程序猿觉得数据结构和算法没用? 串一串一致性协议 当我在说PaaS时,我在说什么 《数据结构与算法之美》——数据结构笔记 PouchContainer技术分享体会 harbor学习 用groovy 来动态化你的代码 精简代码的利器——lombok 学习 《深入剖析kubernetes》笔记 编程语言的动态性 rxjava3——背压 rxjava2——线程切换 spring cloud 初识 《深入拆解java 虚拟机》笔记 《how tomcat works》笔记 hystrix 学习 rxjava1——概念 Redis 学习 TIDB 学习 分布式计算系统的那些套路 Storm 学习 AQS1——论文学习 Unsafe Spark Stream 学习 linux vfs轮廓 《自己动手写docker》笔记 java8 实践 中本聪比特币白皮书 细读 区块链泛谈 比特币 大杂烩 总纲——如何学习分布式系统 hbase 泛谈 forkjoin 泛谈 看不见摸不着的cdn是啥 《jdk8 in action》笔记 程序猿视角看网络 bgp初识 calico学习 AQS——粗略的代码分析 我们能用反射做什么 web 跨域问题 《clean code》笔记 《Elasticsearch权威指南》笔记 mockito简介及源码分析 2017软件开发小结—— 从做功能到做系统 《Apache Kafka源码分析》——clients dns隐藏的一个坑 《mysql技术内幕》笔记2 《mysql技术内幕》笔记1 log4j学习 为什么netty比较难懂? 回溯法 apollo client源码分析及看待面向对象设计 学习并发 docker运行java项目的常见问题 Scala的一些梗 OpenTSDB 入门 spring事务小结 事务一致性 javascript应用在哪里 《netty in action》读书笔记 netty对http2协议的解析 ssl证书是什么东西 http那些事 苹果APNs推送框架pushy apple 推送那些事儿 编写java框架的几大利器 java内存模型 java exception Linux IO学习 netty内存管理 测试环境docker化实践 netty在框架中的使用套路 Nginx简单使用 《Linux内核设计的艺术》小结 Go并发机制及语言层工具 Linux网络源代码学习——数据包的发送与接收 《docker源码分析》小结 docker中涉及到的一些linux知识 Linux网络源代码学习——整体介绍 zookeeper三重奏 数据库的一些知识 Spark 泛谈 链式处理的那些套路 netty回顾 Thrift基本原理与实践(二) Thrift基本原理与实践(一) 回调 异步执行抽象——Executor与Future Docker0.1.0源码分析 java gc Jedis源码分析 Redis概述 机器学习泛谈 Linux网络命令操作 JTA与TCC 换个角度看待设计模式 Scala初识 向Hadoop学习NIO的使用 以新的角度看数据结构 并发控制相关的硬件与内核支持 systemd 简介 quartz 源码分析 基于docker搭建测试环境(二) spring aop 实现原理简述 自己动手写spring(八) 支持AOP 自己动手写spring(七) 类结构设计调整 分析log日志 自己动手写spring(六) 支持FactoryBean 自己动手写spring(九) 总结 自己动手写spring(五) bean的生命周期管理 自己动手写spring(四) 整合xml与注解方式 自己动手写spring(三) 支持注解方式 自己动手写spring(二) 创建一个bean工厂 自己动手写spring(一) 使用digester varnish 简单使用 关于docker image的那点事儿 基于docker搭建测试环境 分布式配置系统 JVM内存与执行 git spring rmi和thrift maven/ant/gradle使用 再看tcp 缓存系统 java nio的多线程扩展 《Concurrency Models》笔记 回头看Spring IOC IntelliJ IDEA使用 Java泛型 vagrant 使用 Go常用的一些库 Python初学 Goroutine 调度模型 虚拟网络 《程序员的自我修养》小结 VPN(Virtual Private Network) Kubernetes存储 访问Kubernetes上的Service Kubernetes副本管理 Kubernetes pod 组件 Go学习 JVM类加载 硬币和扑克牌问题 LRU实现 virtualbox 使用 ThreadLocal小结 docker快速入门

架构

《许式伟的架构课》笔记 Kubernetes webhook 发布平台系统设计 k8s水平扩缩容 Scheduler如何给Node打分 Scheduler扩展 controller 组件介绍 openkruise cloneset学习 kubernetes crd 及kubebuilder学习 pv与pvc实现 csi学习 client-go学习 kubelet 组件分析 调度实践 Pod是如何被创建出来的? 《软件设计之美》笔记 mecha 架构学习 Kubernetes events学习及应用 CRI 《推荐系统36式》笔记 资源调度泛谈 系统设计原则 grpc学习 元编程 以应用为中心 istio学习 下一代微服务Service Mesh 《实现领域驱动设计》笔记 serverless 泛谈 《架构整洁之道》笔记 处理复杂性 那些年追过的并发 服务器端编程 网络通信协议 《聊聊架构》 书评的笔记 如何学习架构 《反应式设计模式》笔记 项目的演化特点 反应式架构摸索 函数式编程的设计模式 服务化 ddd反模式——CRUD的败笔 研发效能平台 重新看面向对象设计 业务系统设计的一些体会 函数式编程 《左耳听风》笔记 业务程序猿眼中的微服务管理 DDD实践——CQRS 项目隔离——案例研究 《编程的本质》笔记 系统故障排查汇总及教训 平台支持类系统的几个点 代码腾挪的艺术 abtest 系统设计汇总 《从0开始学架构》笔记 初级权限系统设计 领域驱动理念入门 现有上传协议分析 移动网络下的文件上传要注意的几个问题 推送系统的几个基本问题 用户登陆 做配置中心要想好的几个基本问题 不同层面的异步 分层那些事儿 性能问题分析 当我在说模板引擎的时候,我在说什么 用户认证问题 资源的分配与回收——池 消息/任务队列

标签


直觉上理解机器学习

2019年08月31日

前言

区块链、docker是各种技术的整合,机器学习也是

线性回归

很多人工智能问题可以理解为分类问题,比如判断一个邮件是否为垃圾邮件,根据身高体重预测一个人的性别,当我们将目标特征数值化之后,可以将目标映射为n维度空间上的一个点

从几何意义上来说,分类问题就是 在n维空间上将 一系列点 划分成 不同的集合,以二分为例

  1. 对于二维空间,分类器就是一条线,直线or 曲线
  2. 对于三维空间,分类器就是一个面,平面or 曲面
  3. 对于高维空间,xx

我们要做的就是根据一系列样本点,找到这条“分界线/面”。线性回归假设特征和结果满足线性关系,线性关系的表达能力非常强大,通过对所有特征的线性变换加一次非线性变换,我们可以划一条“近似的分界线/面”,虽然并不完全准确,但大部分时候已堪大用。

就像数学中的泰特展开式一样,不管多么复杂的函数,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值。而不同的函数曲线其实就是这些基础函数的组合,理所当然也可以用多项式去趋近

正向传播——计算估计值的过程

【机器学习】代价函数(cost function)

给出一个输入数据,我们的算法会通过一系列的过程得到一个估计的函数,这个函数有能力对没有见过的新数据给出一个新的估计,也被称为构建一个模型。

假设有训练样本(x, y),数据有两个特征x1,x2,模型为h,参数为θ,\(\theta=(w1,w2,b)\),估计函数

\[h(x)=g(θ^T x)=g(w_1x_1+w_2x_2+b)\]

即对x1,x2 施加一次线性变换 + 非线性变换,(\(θ^T\)表示θ的转置)。因为x1,x2 都是已知的,所以h(θ) 是一个关于θ的函数

两层神经网络的表示(不同文章的表示用语略微有差异)

正向传播为什么需要非线性激活函数

如果要用线性激活函数,或者没有激活函数,那么无论你的神经网络有多少层,神经网络只是把输入线性组合再输出,两个线性函数组合本身就是线性函数,所以不如直接去掉所有隐藏层。唯一可以用线性激活函数的通常就是输出层

常见激活函数: sigmoid,tanh,ReLU,softMax 机器学习中常用激活函数对比与总结

反向传播——调整θ的过程

从直觉上来说, 如何确定最优的w、b?其他参数都不变,w(或b)的微小变动,记作Δw(或Δb),然后观察输出有什么变化。不断重复这个过程,直至得到对应最精确输出的那组w和b,就是我们要的值。

反向传播的思路:

  1. 概况来讲,任何能够衡量模型预测出来的值h(θ)与真实值y之间的差异的函数都可以叫做代价函数C(θ),如果有多个样本,则可以将所有代价函数的取值求均值,记做J(θ)。因此很容易就可以得出以下关于代价函数的性质:

    • 对于每种算法来说,代价函数不是唯一的;
    • 代价函数是参数θ的函数;
    • 总的代价函数J(θ)可以用来评价模型的好坏,代价函数越小说明模型和参数越符合训练样本(x, y);
    • J(θ)是一个标量;
  2. 当我们确定了模型h,后面做的所有事情就是训练模型的参数θ。那么什么时候模型的训练才能结束呢?这时候也涉及到代价函数,由于代价函数是用来衡量模型好坏的,我们的目标当然是得到最好的模型(也就是最符合训练样本(x, y)的模型)。因此训练参数的过程就是不断改变θ,从而得到更小的J(θ)的过程。理想情况下,当我们取到代价函数J的最小值时,就得到了最优的参数θ.例如,J(θ) = 0,表示我们的模型完美的拟合了观察的数据,没有任何误差。

  3. 代价函数衡量的是模型预测值h(θ) 与标准答案y之间的差异,所以总的代价函数J是h(θ)和y的函数,即J=f(h(θ), y)。又因为y都是训练样本中给定的,h(θ)由θ决定,所以,最终还是模型参数θ的改变导致了J的改变。

  4. 在优化参数θ的过程中,最常用的方法是梯度下降,这里的梯度就是代价函数J(θ)对θ1, θ2, ..., θn的偏导数。由于需要求偏导,我们可以得到另一个关于代价函数的性质:选择代价函数时,最好挑选对参数θ可微的函数(全微分存在,偏导数一定存在)

梯度下降法 ==> 求使得J极小的(w1,w2,b)

  1. 首先对(w1,w2,b)赋值,这个值可以是随机的,也可以让(w1,w2,b)是一个全零的向量
  2. 改变(w1,w2,b)的值,使得J(w1,w2,b)按梯度下降的方向进行减少,梯度方向由J(w1,w2,b)对(w1,w2,b)的偏导数确定
  3. \(w1=w1+\sigma d_{w1}\) 依次得到 w1,w2,b 的新值,\(\sigma\)为学习率

损失函数如何确定

机器学习-损失函数

损失函数是h(θ)和y的函数,本质是关于\(\theta\)的函数,分为

  1. log对数损失函数,PS:概率意义上,假设样本符合伯努利分布

    \[L(Y,P(Y|X))=-logP(Y|X)\]
  2. 平方损失函数 ,PS:概率意义上,假设误差符合高斯分布

    \[L(Y,h_\theta(X))=(Y-h\_\theta(x))^2\] \[MSE(\theta)=MSE(X,h_\theta)=\frac{1}{m}\sum\_{i=1}^m(\theta^T.x^i-y^i)^2\]
  3. 指数损失函数
  4. Hinge损失函数
  5. 0-1损失函数
  6. 绝对值损失函数

    \[L(Y,h_\theta(X))=|Y-h\_\theta(x)|\]

https://zhuanlan.zhihu.com/p/46928319

对线性回归,logistic回归和一般回归的认识

逻辑回归

逻辑回归是线性回归的一种特例,激活函数使用 Sigmoid,损失函数使用 log对数损失函数

正向传播过程

\[f(x)=\theta^Tx=w_1x_1+w_2x_2+b\] \[g(z)=\frac{1}{1+e^{-z}}\]

激活函数为什么使用Sigmoid

  1. 它的输入范围是正负无穷,而值刚好为(0,1),正好满足概率分布为(0,1)的要求。我们用概率去描述分类器,自然比单纯的某个阈值要方便很多
  2. 它是一个单调上升的函数,具有良好的连续性,不存在不连续点

损失函数为什么使用对数损失函数

\(h_\theta(x)\)与y 只有0和1两个取值

对数损失函数的直接意义

logistic回归详解(二):损失函数(cost function)详解

\[cost(h_\theta(x),y)= \begin{cases} -logh\_\theta(x)\ \ \ \ \ \ \ \ \ \ \ if\ y=1 \\\ -log(1-h\_\theta(x))\ \ if\ y=0 \\\ \end{cases}\]

当y=1时

  1. 如果此时\(h_θ(x)=1\),\(logh_θ(x)=0\),则单对这个样本而言的cost=0,表示这个样本的预测完全准确。
  2. 如果此时预测的概率\(h_θ(x)=0\),\(logh_θ(x)=-\infty\),\(-logh_θ(x)=\infty\),相当于对cost加一个很大的惩罚项。

当y=0 时类似,所以,取对数在直觉意义上可以将01二值与 正负无穷映射起来

汇总一下就是

\(h_\theta(x)\) y cost
0 0 0
0 1 \(\infty\)
1 0 \(\infty\)
1 1 0

将以上两个表达式合并为一个,则单个样本的损失函数可以描述为:

\[cost(h_\theta(x),y)= -y\_ilogh\_\theta(x)- (1-y\_i)log(1-h\_\theta(x))\]

因为\(h_\theta(x)\)与y 只有0和1两个取值,该函数与上述表格 或分段表达式等价

全体样本的损失函数可以表示为:

\[cost(h_\theta(x),y)= \sum\_{i=1}^m -y\_ilogh\_\theta(x)- (1-y\_i)log(1-h\_\theta(x))\]

对数损失函数的概率意义

逻辑回归为什么使用对数损失函数

对于逻辑回归模型,假定的概率分布是伯努利分布(p未知)

\[P(X=n)= \begin{cases} 1-p \ \ \ \ n=0\\\ p \ \ \ \ \ \ n=1\\\ \end{cases}\]

概率公式可以表示为( x只能为0或者1)

\[f(x)=p^x(1-p)^{1-x}\]

假设我们做了N次实验,得到的结果集合为 data={x1,x2,x3},对应的最大似然估计函数可以写成

\[P(data|p)= \prod_{i=1}^Nf(x\_i)= \prod\_{i=1}^Np^{x\_i}(1-p)^{1-x\_i}\]

要使上面的式子最大,等价于使加上ln底的式子值最大,我们加上ln的底就可以将连乘转换为加和的形式

\[lnP(data|p)= \sum\_{i=1}^Nx\_ilnp+(1-x\_i)(1-p)\]

对数损失函数与上面的极大似然估计的对数似然函数本质上是等价的,xi 对应样本实际值yi,p即 \(h_\theta(x)\),所以逻辑回归直接采用对数损失函数来求参数,实际上与采用极大似然估计来求参数是一致的

几何意义和概率意义殊途同归(当然,不是所有的损失函数都可以这么理解)

概率论

为什么我说概率论是大学最不能翘的一门数学课

假设你在一个教室里,同时周围有30名学生,游戏的规则是这样的:一开始,大家都是鸡蛋,你们需要和周围同类型的物种进行石头剪子布来升级,鸡蛋找鸡蛋划石头剪子布,胜利者就变成了小鸡。接着小鸡找小鸡划,胜利者就变成了凤凰,然后,凤凰和凤凰划,胜利者就变成了人,变成人的同学就是最后的赢家,同时,每次石头剪子布输的那一方都会降一级,比如从凤凰降级到小鸡,小鸡降级到鸡蛋,游戏限时十分钟,所以,现在问你在这个游戏中如何取胜(此处认真思考二十秒)

如果一个人在这十分钟内只进行一轮石头剪子布(我们现在定义由鸡蛋到人的三次石头剪子布为一轮,如果提前输掉则视作此轮结束)那么这个人变成人的概率为1/8,而如果它进行两轮,那么我们先不管他是在第一轮还是第二轮中变成了人,只要最后变成人了就OK,所以我们只用讨论它两轮都输的概率,就是(1-1/8)^2,而变成人的概率为1-(1-1/8)^2=15/64>1/8,依次类推,可知道如果进行n轮,则他变成人的概率为1-(1-1/8)^n,当n趋于无穷时,这个概率将趋于 1,所以这个游戏取胜的秘诀就是不停的和周围的人进行石头剪子布,频次越高,也就越有机会变成人。

对于大多数玩家而言,是不会仔细思考这个游戏背后的数学模型的。想对上述游戏进行一次完整而严谨的建模也将是一个十分复杂的过程。

概率:了解不确定性在1654年的一天早上,法国数学家布莱兹·帕斯卡收到了他的朋友贡博的一封来信:两位贵族A与B正在进行一场赌局,赌注是每人500法郎,两人轮流掷硬币,得到正面则A得一分,反面则B得一分,每一局两人得分的机会相等,谁先得到6分谁就得到1000法郎。两人激战正酣,比分达到2比4之际,B突然有事需要终止赌局。赌注应该如何分配才最公平。

对于某个非常简单的随机事件,比如说掷硬币,我们知道每种结果出现可能性的大小,这样的事件被称为“基本事件”。我们可以多次重复这些基本事件,假定它们发生的可能性不会改变,而且这些重复没有相互影响。如果我们将这些基本事件以合适的形式组合起来,就能得到一个更为复杂而有趣的系统。许多概率问题实际上就是对这些随机系统的各种性质的研究。

概率与自然语言处理

概率的定义就是随机事件发生的可能性的度量,而信息则是减少随机不定性的东西,这两者生而就是有着千丝万缕的联系的,所以我们在研究自然语言处理(本质是通信)这类信息时,也必然要引入概率的知识

贝叶斯公式的另类解读

P(AB) = P(A|B) * P(B) = P(B|A) * P(A)
\[P(A|B) = \frac{P(B|A) * P(A)}{P(B)} = \frac{P(B|A)}{P(B)} * P(A)\]

P(A|B) 可以视为 P(A) 的增强,也就是后验概率是先验概率的增强。观测者观测历史数据得出预测假设P(A),然后新的信息P(B)出现,观测者修正预测为P(A|B)P(B|A)/P(B) 被称为调整因子。

定义P(A|B)是P(B|A)的逆概率。贝叶斯最早的目的就是研究一个概率和他的逆概率之间的关系。

在实际的场景下, A 和 B 通常代表了一个结果和原因, P(结果|原因)好算,P(原因|结果)知果索因就很麻烦,不然侦探片就没那么好看了

人们已经能够计算”正向概率“,如“一个袋子N个白球M个黑球,你伸手进去摸一把,摸出黑球的概率多大”。而一个自然而然的问题反过来:如果事先不知道袋子中黑白球比例,而是闭着眼睛摸出好几个球,观察这些取出来的球的颜色之后,那么我们可以对袋子中黑白球的比例做出怎样的推测?如果再摸出几个球,是否要对刚才的推测进行校正?

贝叶斯公式看着没什么感觉,但在贝叶斯分类中就很有用武之地了。比如我们将水果的形状、颜色、纹理、重量、握感、口感全部数值化。可以得到一个苹果、橙子是黄颜色的概率分别是多少,基于贝叶斯公式就可以反推一个黄色的、圆形水果是苹果、橙子的概率。前者是训练数据,后者是计算机根据贝叶斯分类算法做出的判断。

怎么简单理解贝叶斯公式?半瓶晃荡加水中的回答 最重要的思维并非是逻辑思维,是直觉式思维。在学习过程中,必须把知识和直觉思维联系起来,才能真正掌握这个知识。直觉性思维的本质,是通过观察少量结果,反向推导出事物的因果联系。

概率论与数理统计

  概率论 数理统计
方法 根据已知的分布来分析随机变量的特征与规律 根据得到的观察结果对原始分布做出推断
具体的说是假定样本符合某一分布,估计分布对应概率函数的参数值
例子 已知摇奖规律判断一注号码中奖的可能性 根据之前多次中奖不中奖的号码以一定的精确性推断摇奖的规律
例子 已知人群身高符合正态分布,预测一个陌生人的身高 已知一个群体的身高, 且假设符合正态分布,推测正态分布的参数值

不管是概率论,还是数理统计,分布对应的概率函数都是已知的。

对于P(x|θ)输入有两个:x表示某一个具体的数据;θ表示模型的参数。

  1. 如果θ是已知确定的,x是变量,这个函数叫做概率函数(probability function),它描述对于不同的样本点x,其出现概率是多少。
  2. 如果x是已知确定的,θ是变量,这个函数叫做似然函数(likelihood function), 它描述对于不同的模型参数,出现x这个样本点的概率是多少,也可以用P(x;θ) 来表示

详解最大似然估计(MLE)、最大后验概率估计(MAP),以及贝叶斯公式的理解

  1. 最大似然估计是求参数θ, 使似然函数P(data|θ)最大。换个说法,求使似然函数P(data|θ)最大的θ
  2. 最大后验概率估计则是想求θ使P(data|θ)P(θ)最大。换个说法,求使P(data|θ)P(θ)最大的θ

假设有一个造币厂生产某种硬币,现在我们拿到了一枚这种硬币,想试试这硬币是不是均匀的。即想知道抛这枚硬币,正反面出现的概率(记为θ)各是多少?于是我们拿这枚硬币抛了10次,得到的数据(data)是:反正正正正反正正正反。我们可以假设抛硬币模型是二项分布,正面概率θ是模型参数,如何根据 data 求θ?

最大似然估计MLE

那么,出现实验结果data(即反正正正正反正正正反)的似然函数是多少呢?

\[P(data|θ)=(1−θ)×θ×θ×θ×θ×(1−θ)×θ×θ×θ×(1−θ)=θ^7(1−θ)^3=f(θ)\]

注意,这是个只关于θ的函数。而最大似然估计,顾名思义,就是要最大化这个函数。对应使得 f(data,θ) 导数为0 的点, 在θ=0.7时,似然函数取得最大值。

最大后验概率估计MAP

一些人可能会说,硬币一般都是均匀的啊! 就算你做实验发现结果是“反正正正正反正正正反”,我也不信θ=0.7。如果一枚硬币抛10次,10次均为正面,根据最大似然估计,那么这枚硬币的概率应该为1。这也未免太武断了。

MAP其实是在最大化

\[P(θ|data)=\frac{P(data|θ)P(θ)}{P(data)}\]

不过因为data是确定的(即投出的“反正正正正反正正正反”),P(data)是一个已知值,所以去掉了分母P(data)。对于投硬币的例子来看,我们认为(”先验地知道“)θ取0.5的概率很大,取其他值的概率小一些。我们用一个高斯分布来具体描述我们掌握的这个先验知识,例如假设P(θ)为均值0.5,方差0.1的高斯函数

\(P(data θ)P(θ)=θ^7(1−θ)^3P(θ)\),则P(data|θ)P(θ)的函数图像为:

在θ=0.558时函数取得了最大值。那要怎样才能说服一个贝叶斯派相信θ=0.7呢?你得多做点实验。如果做了1000次实验,其中700次都是正面向上,则在θ=0.696处,P(data|θ)P(θ)取得最大值。

最大后验估计此外再提两点:

  1. 如果先验认为这个硬币是概率是均匀分布的,被称为无信息先验( non-informative prior ),通俗的说就是“让数据自己说话”,此时贝叶斯方法等同于频率方法。
  2. 随着数据的增加,先验的作用越来越弱,数据的作用越来越强,参数的分布会向着最大似然估计靠拢。而且可以证明,最大后验估计的结果是先验和最大似然估计的凸组合。

参数和超参数

parameters: \(W\^{[1]},b^{[1]},W^{[2]},b^{[2]},…\)

超参数hyperparameters: 每一个参数都能够控制w 和 b

  1. learning rate
  2. 梯度下降算法循环的数量
  3. 隐层数
  4. 每个隐层的单元数
  5. 激活函数

深度学习的应用领域,很多时候是一个凭经验的过程,选取一个超参数的值,试验,然后再调整。

吴恩达:我通常会从逻辑回归开始,再试试一到两个隐层,把隐藏数量当做参数、超参数一样调试,这样去找比较合适的深度。

小结

首先你要知道 机器学习的两个基本过程

  1. 正向传播,线性 + 非线性函数(激活函数) 得到一个估计值
  2. 反向传播,定义损失函数,通过(链式)求导 更新权重

关键问题

  1. 激活函数的选择
  2. 损失函数的选择
  3. 对损失函数及\(\theta\)链式求偏导数,涉及到矩阵的导数,根据偏导 + 学习率 调整\(\theta\)
  4. 向量化上述过程
  5. 使用python 中线程的 矩阵/向量计算的库 将上述过程代码化, 涉及到numpy的学习

吴恩达:深度学习