技术

学习网络 学习Linux go 内存管理 golang 系统调用与阻塞处理 图解Goroutine 调度 重新认识cpu mosn有的没的 负载均衡泛谈 《Mysql实战45讲》笔记 单元测试的新解读 《Redis核心技术与实现》笔记 《Prometheus监控实战》笔记 Prometheus 告警学习 calico源码分析 对容器云平台的理解 Prometheus 源码分析 并发的成本 基础设施优化 hashicorp raft源码学习 docker 架构 mosn细节 与微服务框架整合 Java动态代理 编程范式 并发通信模型 《网络是怎样连接的》笔记 go channel codereview gc分析 jvm 线程实现 go打包机制 go interface及反射 如何学习Kubernetes 《编译原理之美》笔记——后端部分 《编译原理之美》笔记——前端部分 Pilot MCP协议分析 go gc 内存管理玩法汇总 软件机制 istio流量管理 Pilot源码分析 golang io 学习Spring mosn源码浅析 MOSN简介 《datacenter as a computer》笔记 学习JVM Tomcat源码分析 Linux可观测性 学习存储 学计算 Gotty源码分析 kubernetes operator kaggle泰坦尼克问题实践 kubernetes垂直扩缩容 神经网络模型优化 直觉上理解机器学习 knative入门 如何学习机器学习 神经网络系列笔记 TIDB源码分析 《阿里巴巴云原生实践15讲》笔记 Alibaba Java诊断工具Arthas TIDB存储——TIKV 《Apache Kafka源码分析》——简介 netty中的线程池 guava cache 源码分析 Springboot 启动过程分析 Spring 创建Bean的年代变迁 Linux内存管理 自定义CNI IPAM 副本一致性 spring redis 源码分析 kafka实践 spring kafka 源码分析 Linux进程调度 让kafka支持优先级队列 Codis源码分析 Redis源码分析 C语言学习 《趣谈Linux操作系统》笔记 docker和k8s安全机制 jvm crash分析 Prometheus 学习 容器日志采集 Kubernetes 控制器模型 Kubernetes监控 容器狂占cpu怎么办? Kubernetes资源调度——scheduler 时序性数据库介绍及对比 influxdb入门 maven的基本概念 《Apache Kafka源码分析》——server Kubernetes objects 源码分析体会 《数据结构与算法之美》——算法新解 Kubernetes源码分析——controller mananger Kubernetes源码分析——apiserver Kubernetes源码分析——kubelet Kubernetes介绍 ansible学习 Kubernetes源码分析——从kubectl开始 jib源码分析之Step实现 jib源码分析之细节 线程排队 跨主机容器通信 jib源码分析及应用 为容器选择一个合适的entrypoint kubernetes yaml配置 《持续交付36讲》笔记 mybatis学习 程序猿应该知道的 无锁数据结构和算法 CNI——容器网络是如何打通的 为什么很多业务程序猿觉得数据结构和算法没用? 串一串一致性协议 当我在说PaaS时,我在说什么 《数据结构与算法之美》——数据结构笔记 PouchContainer技术分享体会 harbor学习 用groovy 来动态化你的代码 精简代码的利器——lombok 学习 《深入剖析kubernetes》笔记 编程语言的动态性 rxjava3——背压 rxjava2——线程切换 spring cloud 初识 《深入拆解java 虚拟机》笔记 《how tomcat works》笔记 hystrix 学习 rxjava1——概念 Redis 学习 TIDB 学习 分布式计算系统的那些套路 Storm 学习 AQS1——论文学习 Unsafe Spark Stream 学习 linux vfs轮廓 《自己动手写docker》笔记 java8 实践 中本聪比特币白皮书 细读 区块链泛谈 比特币 大杂烩 总纲——如何学习分布式系统 hbase 泛谈 forkjoin 泛谈 看不见摸不着的cdn是啥 《jdk8 in action》笔记 程序猿视角看网络 bgp初识 calico学习 AQS——粗略的代码分析 我们能用反射做什么 web 跨域问题 《clean code》笔记 《Elasticsearch权威指南》笔记 mockito简介及源码分析 2017软件开发小结—— 从做功能到做系统 《Apache Kafka源码分析》——clients dns隐藏的一个坑 《mysql技术内幕》笔记2 《mysql技术内幕》笔记1 log4j学习 为什么netty比较难懂? 回溯法 apollo client源码分析及看待面向对象设计 学习并发 docker运行java项目的常见问题 Scala的一些梗 OpenTSDB 入门 spring事务小结 事务一致性 javascript应用在哪里 《netty in action》读书笔记 netty对http2协议的解析 ssl证书是什么东西 http那些事 苹果APNs推送框架pushy apple 推送那些事儿 编写java框架的几大利器 java内存模型 java exception Linux IO学习 netty内存管理 测试环境docker化实践 netty在框架中的使用套路 Nginx简单使用 《Linux内核设计的艺术》小结 Go并发机制及语言层工具 Linux网络源代码学习——数据包的发送与接收 《docker源码分析》小结 docker中涉及到的一些linux知识 Linux网络源代码学习——整体介绍 zookeeper三重奏 数据库的一些知识 Spark 泛谈 链式处理的那些套路 netty回顾 Thrift基本原理与实践(二) Thrift基本原理与实践(一) 回调 异步执行抽象——Executor与Future Docker0.1.0源码分析 java gc Jedis源码分析 Redis概述 机器学习泛谈 Linux网络命令操作 JTA与TCC 换个角度看待设计模式 Scala初识 向Hadoop学习NIO的使用 以新的角度看数据结构 并发控制相关的硬件与内核支持 systemd 简介 quartz 源码分析 基于docker搭建测试环境(二) spring aop 实现原理简述 自己动手写spring(八) 支持AOP 自己动手写spring(七) 类结构设计调整 分析log日志 自己动手写spring(六) 支持FactoryBean 自己动手写spring(九) 总结 自己动手写spring(五) bean的生命周期管理 自己动手写spring(四) 整合xml与注解方式 自己动手写spring(三) 支持注解方式 自己动手写spring(二) 创建一个bean工厂 自己动手写spring(一) 使用digester varnish 简单使用 关于docker image的那点事儿 基于docker搭建测试环境 分布式配置系统 JVM内存与执行 git spring rmi和thrift maven/ant/gradle使用 再看tcp 缓存系统 java nio的多线程扩展 《Concurrency Models》笔记 回头看Spring IOC IntelliJ IDEA使用 Java泛型 vagrant 使用 Go常用的一些库 Python初学 Goroutine 调度模型 虚拟网络 《程序员的自我修养》小结 VPN(Virtual Private Network) Kubernetes存储 访问Kubernetes上的Service Kubernetes副本管理 Kubernetes pod 组件 Go学习 JVM类加载 硬币和扑克牌问题 LRU实现 virtualbox 使用 ThreadLocal小结 docker快速入门

架构

《许式伟的架构课》笔记 Kubernetes webhook 发布平台系统设计 k8s水平扩缩容 Scheduler如何给Node打分 Scheduler扩展 controller 组件介绍 openkruise cloneset学习 kubernetes crd 及kubebuilder学习 pv与pvc实现 csi学习 client-go学习 kubelet 组件分析 调度实践 Pod是如何被创建出来的? 《软件设计之美》笔记 mecha 架构学习 Kubernetes events学习及应用 CRI 《推荐系统36式》笔记 资源调度泛谈 系统设计原则 grpc学习 元编程 以应用为中心 istio学习 下一代微服务Service Mesh 《实现领域驱动设计》笔记 serverless 泛谈 《架构整洁之道》笔记 处理复杂性 那些年追过的并发 服务器端编程 网络通信协议 《聊聊架构》 书评的笔记 如何学习架构 《反应式设计模式》笔记 项目的演化特点 反应式架构摸索 函数式编程的设计模式 服务化 ddd反模式——CRUD的败笔 研发效能平台 重新看面向对象设计 业务系统设计的一些体会 函数式编程 《左耳听风》笔记 业务程序猿眼中的微服务管理 DDD实践——CQRS 项目隔离——案例研究 《编程的本质》笔记 系统故障排查汇总及教训 平台支持类系统的几个点 代码腾挪的艺术 abtest 系统设计汇总 《从0开始学架构》笔记 初级权限系统设计 领域驱动理念入门 现有上传协议分析 移动网络下的文件上传要注意的几个问题 推送系统的几个基本问题 用户登陆 做配置中心要想好的几个基本问题 不同层面的异步 分层那些事儿 性能问题分析 当我在说模板引擎的时候,我在说什么 用户认证问题 资源的分配与回收——池 消息/任务队列

标签


java内存模型

2017年05月02日

前言

Java Memory Model 它是一系列文章 Java Concurrency 中的一篇文章。

Java和操作系统交互细节

为什么会有内存模型一说

硬件层面的内存模型

Java内存模型深入分析曾经,计算机的世界远没有现在复杂,那时候的cpu只有单核,我们写的程序也只会在单核上按代码顺序依次执行,根本不用考虑太多。后来,随着技术的发展,cpu的执行速度和内存的读写速度差异越来越大,人们很快发现,如果还是按照代码顺序依次执行的话,cpu会花费大量时间来等待内存操作的完成,这造成了cpu的巨大浪费。为了弥补cpu和内存之间的速度差异,计算机世界的工程师们在cpu和内存之间引入了缓存,虽然该方法极大的缓解了这一问题,但追求极致的工程师们觉得这还不够,他们又想到了一个点子,就是通过合理调整内存的读写顺序来进一步缓解这个问题

  1. 比如,在编译时,我们可以把不必要的内存读写去掉,把相关连的内存读写尽量放到一起,充分利用缓存。
  2. 比如,在运行时,我们可以对内存提前读,或延迟写,这样使cpu不用总等待内存操作的完成,充分利用cpu资源,避免计算能力的浪费。

这一想法的实施带来了性能的巨大提升,但同时,它也带来了一个问题,就是内存读写的乱序,比如原本代码中是先写后读,但在实际执行时却是先读后写,怎么办呢?为了避免内存乱序给上层开发带来困扰,这些工程师们又想到了可以通过分析代码中的语义,把有依赖关系,有顺序要求的代码保持原有顺序,把剩余的没有依赖关系的代码再进行性能优化,乱序执行,通过这样的方式,就可以屏蔽底层的乱序行为,使代码的执行看起来还是和其编写顺序一样,完美。

多核时代的到来虽然重启了计算机世界新一轮的发展,但也带来了一个非常严峻的问题,那就是多核时代如何承接单核时代的历史馈赠。单核运行不可见的乱序,在多核情况下都可见了,且此种乱序已经严重影响到了多核代码的正确编写。默认乱序执行,在关键节点保证有序,这种方式不仅使单核时代的各种乱序优化依然有效,也使多核情况下的乱序行为有了一定的规范。基于此,各种硬件平台提供了自己的方式给上层开发,约定好只要按我给出的方式编写代码,即使是在多核情况下,该保证有序的地方也一定会保证有序。这套在多核情况下,依然可以让开发者指定哪些代码保证有序执行的规则,就叫做内存模型。

内存模型的英文是memory model,或者更精确的来说是memory consistency model,它其实就是一套方法或规则,用于描述如何在多核乱序的情况下,通过一定的方式,来保证指定代码的有序执行。它是介于硬件和软件之间,以一种协议的形式存在的。对硬件来说,它描述的是硬件对外的行为规范,对软件来说,它描述的是编写多线程代码的一套规则。这就衍生出了一个问题,就是不同硬件上的内存模型差异很大,完全不兼容。比如应用于桌面和服务器领域的x86平台用的是x86 tso内存模型。比如应用于手机和平板等移动设备领域的arm平台用的是weakly-ordered内存模型。比如最近几年大火的riscv平台用的是risc-v weak memory ordering内存模型。

语言层面的内存模型

由于Java的目标是write once, run anywhere,所以它不仅创造性的提出了字节码中间层,让字节码运行在虚拟机上,而不是直接运行在物理硬件上,它还在语言层面内置了对多线程的跨平台支持,也为此提出了Java语言的内存模型,这样,当我们用Java写多线程项目时,只要按照Java的内存模型规范来编写代码,Java虚拟机就能保证我们的代码在所有平台上都是正确执行的。在语言层面支持多线程在现在看来不算什么,但在那个年代,这也算是一项大胆的创举了,它也成为了首个主流编程语言中,内置支持多线程编码的语言

JMM属于语言级的内存模型,它确保在不同的编译器和不同的处理器平台之上,通过禁止特定类型的编译器重排序和处理器重排序,为程序员提供一致的内存可见性保证。

Java内存模型FAQ(二) 其他语言,像C++,也有内存模型吗?大部分其他的语言,像C和C++,都没有被设计成直接支持多线程。这些语言对于发生在编译器和处理器平台架构的重排序行为的保护机制会严重的依赖于程序中所使用的线程库(例如pthreads),编译器,以及代码所运行的平台所提供的保障。也就是,语言上没有final、volatile 关键字这些,可以对编译器和处理器重排序 施加影响。

Java内存模型FAQ(六)没有正确同步的含义是什么?

java memory model 与 harware memory Architecture

这几张图从粗到细,逐步引出了jvm 内存组成,栈的组成,堆的组成,栈和堆内数据的关系。逐步介绍了 thread stack、call stack(方法栈、栈帧)等概念

cpu ==> 寄存器 ==> cpu cache ==> main memory,cpu cache 由cache line 组成,cache line 是 与 main memory 沟通的基本单位,就像mysql innodb 读取 一行数据时 实际上不是 只读取一行,而是直接读取一页到内存一样。

The hardware memory architecture does not distinguish between thread stacks and heap. On the hardware, both the thread stack and the heap are located in main memory. Parts of the thread stacks and heap may sometimes be present in CPU caches and in internal CPU registers. jvm 和 物理机 对“内存/存储” 有不同的划分,jvm 中没有cpu、cpu core 等抽象存在,也没有寄存器、cpu cache、main memory 的区分,因此 stack、heap 数据 可能分布在 寄存器、cpu cache、main memory 等位置。

When objects and variables can be stored in various different memory areas in the computer, certain problems may occur. The two main problems are:

  1. Visibility of thread updates (writes) to shared variables. 可以用volatile 关键字解决
  2. Race conditions when reading, checking and writing shared variables. 让两个线程 不要同时执行同一段代码,可以用synchronized block 解决,本质就是将竞争转移(从竞争同一个变量 到去竞争 同一个锁)。或者使用cas 保证竞争是原子的。

就着上图 去理解《java并发编程实战》中的有序性、原子性及可见性 ,会有感觉很多。

可以脑补一下 基于jvm 内存模型,多线程执行 访问 对象的局部变量 的图,直接的观感是jvm 是从内存(heap)中直接拿数据的,会有原子性问题,但没有可见性问题。但实际上,你根本搞不清楚,从heap 中拿到的对象变量的值 是从寄存器、cpu cache、main memory 哪里拿到的,写入问题类似。jvm 提供volatile 等微操工具,介入两种内存模型的映射过程,来确保预期与实际一致,从这个角度看,jvm 并没有完全屏蔽硬件架构的特性(当然,也是为了提高性能考虑),不过确实做到了屏蔽硬件架构的差异性。

java 内存模型与并发读写控制

Java内存模型深入分析如果程序中存在对同一变量的多个访问操作,且至少有一个是写操作,则这些访问操作被称为是conflicting操作,如果这些conflicting操作没有被happens-before规则约束,则这些操作被称为data race,有data race的程序就不是correctly synchronized,运行时也就无法保证sequentially consistent特性,没有data race的程序就是correctly synchronized,运行时可保证sequentially consistent特性。

happens-before规则由两部分组成,一部分是program order,即单线程中代码的编写顺序,另一部分是synchronizes-with,即多线程中的各种同步原语。也就是说,在单线程中,代码编写的前后顺序之间有happens-before关系,在多线程中,有synchronizes-with关联的代码之间也有happens-before关系。

  1. program order,即单线程中代码的字面顺序
  2. synchronizes-with,即各种同步操作,比如synchronized关键字,volatile关键字,线程的启动关闭操作等。定义多线程之间操作的顺序

极客时间《深入拆解Java虚拟机》

  1. happens-before 关系是用来描述两个操作的内存可见性的。如果操作 X happens-before 操作 Y,那么 X 的结果对于 Y 可见。
  2. 规定的happens-before 关系:Java 内存模型定义了六七种线程间的 happens-before 关系。比如 线程的启动操作(即 Thread.starts()) happens-before 该线程的第一个操作。
  3. 可以手动控制的happens-before 关系:Java 内存模型通过定义了一系列的 happens-before 操作(包括锁、volatile 字段、final 字段与安全发布),让应用程序开发者能够轻易地表达不同线程的操作之间的内存可见性。
  4. Java 内存模型是通过内存屏障来禁止重排序的。对于即时编译器来说,内存屏障将限制它所能做的重排序优化。对于处理器来说,内存屏障会导致缓存的刷新操作。

法无禁止即允许,在遵守happens-before规则的前提下,即时编译器以及底层体系架构能够调整内存访问操作(也就是重排序),以达到性能优化的效果。

《mysql技术内幕》笔记2 提到 数据库一共会发生11种异常现象,脏读、不可重复读、幻读只是其中三种,数据库提出隔离性的概念,用这三种异常现象的出现情况来描述并发读写的安全程度。java 有可见性的概念,提供关键字(而不是配置,比如隔离级别是mysql的一种配置)给用户来描述期望的可见性。

  为什么提出 实现原理
隔离性 实现mysql 需要大量彼此关联的数据结构,并发读写
java内存模型 java内存模型与硬件内存模型的映射,并发读写 + 编译器、cpu重排序 happens-before 关系 + 内存屏障

其它材料

JSR 133 (Java Memory Model) FAQ及其译文Java内存模型FAQ(一) 什么是内存模型深入理解Java内存模型(一)——基础系列文章

Java includes several language constructs, including volatile, final, and synchronized, which are intended to help the programmer describe a program’s concurrency requirements to the compiler. The Java Memory Model defines the behavior of volatile and synchronized, and, more importantly, ensures that a correctly synchronized Java program runs correctly on all processor architectures.

volatile的写操作是发生在后续的读操作之前:volatile保证的有序性其实是在跨线程之间建立了一条happens-before规则,即volatile的写操作发生在后续的volatile读操作之前,它只建立了这一条有序关系。所以说volatile保证的有序是帮助串联起跨线程之间操作的有序。在x86平台上,volatile的读操作没有任何消耗,volatile的写操作使用的是 lock 汇编指令。